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Introduction
Alternatives to animal research are highly sought-after since pre-
clinical studies are not just expensive and time-consuming but in 
most cases ethically questionable. Further, the abnormally high fail-
ure rates of experimental drugs in clinical settings due to the lack 
of reliable and predictive preclinical models have added to the re-
searchers’ difficulties. The development of organ-on-chip (OoC) 
devices cultured in a lab environment is a recent breakthrough in 
the study of in vitro human micro-physiological systems that can 
mimic functions at the organ and even the organismal levels.1–5 An 
OoC is a biomimetic system capable of simulating the physiologi-

cal microenvironment of biological tissues and organs (Fig. 1). This 
technology combines cell biology and engineering to create a micro-
physiological environment capable of nourishing and nurturing cel-
lular architecture and function outside the biological system. Here, 
isolated cells are cultured in a microfluidic environment that simu-
lates the natural physiological milieu.6 The extracellular matrix pro-
vides structural support and biochemical signals necessary for nor-
mal physiological functioning. This microenvironment is anchored 
in a chip made from an inert material such as polydimethylsiloxane 
(PDMS), glass, or thermoplastic resin. This comprehensive review 
paper aims to provide new insights into the current research in the 
field of OoC technology. Through a meticulous examination of the 
latest advancements, applications, and challenges, the review seeks 
to offer valuable insights into the potential of OoC platforms for rev-
olutionizing drug development, disease modeling, and personalized 
medicine thus contributing to the ongoing discourse on the trans-
formative impact of OoCs on biomedical research and healthcare.

Basic structural concept of OoC
OoCs are classified into single, double, or multichannel chips. 
Double-channel chips consist of two separate channels connected 
by a porous membrane and can be used to study the interphase be-
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tween different cells in the same tissue. Two inlets and two outlets 
are built into the system to guide the entry and exit of the perfusion 
fluid. These channels are also used to study the effect of drugs on 
the cells (Fig. 2). The perfusion fluid flows through the channels 
in a steady manner or a pulsed manner. OoCs are fitted with physi-
cal sensors for monitoring pressure, flow rate, and other param-
eters and are also fitted with chemical and/or biological sensors for 
measuring pH, interactions, and concentration gradient as well as 
physiological responses. Some systems are equipped with imag-
ing capabilities that allow researchers to observe cellular interac-
tions in real time (Fig. 2). Interestingly, some chips can reproduce 
tissue-tissue interfaces and can also deliver pertinent mechanical 
signals, such as breathing and peristalsis-like movements, thus 
characterizing organ physiology and disease states. Further, hu-
man micro-level multi-organ lab-originated systems that replicate 
both drug metabolism and whole-body physiology can be made by 
interlinking two or more organ chips. Thanks to recent advance-
ments in stem cell technologies, patient-specific stem cells can 
now be harvested to construct customized OoCs that can be used 
to study the effect of specific drugs on the patient’s cells.7

The advancement of microphysiological systems has been fa-
cilitated by developments in stem cell engineering and regenera-
tive medicine. Numerous culture systems have been developed to 
recreate tissue and organ functioning at levels that were previously 
unachievable. To further improve such biological mimicry, two 

main strategies for developing microphysiological systems are be-
ing pursued: (a) fixed 3D culture systems with intricate structural 
details, and (b) microfluidic 3D culture matrices with dynamic 
fluid flow (organ chips).8,9

Drawbacks of fixed 3D culture systems
Fixed microphysiological system prototypes, such as micro-engi-
neered organoids as well as tissues grown within 3D extracellular 
matrix hydrogel gels, have demonstrated an impressive capacity 
to repeat tissue histogenesis and a wide range of biological func-
tions such as metabolism of the drug and cell toxicity responses. 
However, they fail to simulate the tissue-to-tissue interface, vas-
cular flow, interstitial movement, distribution of immune cells, 
and pharmacokinetic and pharmacodynamic (PK/PD) profile of 
administered drugs. Therefore, fixed microphysiological systems 
fail to accurately evaluate in vivo drug distribution, effectiveness, 
and toxicity. These drawbacks can be overcome by using micro-
fluidic OoCs.10

History of microfluidic 3D culture devices
The lung alveolus, an important component of the respiratory 
system, was first recreated in the lab using an organ chip.9 For 
this purpose, a soft lithography-based manufacturing technique 
adapted from computer hardware components was utilized. This 
model was a modified version of a less complex device where liq-

Fig. 2. Schematic representation of organ-on-chip at cellular level. 

Fig. 1. An illustration of organ-on-chip simulating the biological microenvironment. 
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uid plugs were passed through a narrow hollow channel to create 
audible sounds thereby replicating fluid-filled lungs.11 Several ex-
amples of such microfluidic 3D systems have since been reported 
in the literature. A few prominent ones are discussed here in brief.

Examples of organ-on-chip devices

Lung-on-chip
Since lung tissue is not capable of regeneration, any damage could 
be long-lasting. Additionally, smokers have a higher probability 
of being afflicted with lung cancer. Furthermore, several countries 
such as India and China have extremely high levels of air pollu-
tion, which seriously harms the lungs.

These factors have contributed to a significant rise in lung cell 
research, and due to the recent surge in the popularity of OoCs, nu-
merous studies to replicate lungs for research purposes have been 
reportedA few important studies are cited in this section. Wang et. 
al. demonstrated the capability of lung-on-chip (LoC) to simulate 
the microenvironment of human body to carry out metabolic and 
regulatory activities.12 Recent advances, challenges and applica-
tions have been discussed in detail by Francis et. al. and Dallaquila 
et. al.13,14 Strategies for mimicking the physiological functions of 
the lung and studying the progression of lung diseases in LoC have 
been discussed in a review by Zhang et. al.15 Further, Bennet et. al. 
published a review on the challenges, opportunities and advance-
ments in LoC models.16 Additionally, the role of LoC in new drug 
development has been reviewed by Shreshtha et. al.17 Various case 
studies on the application of LoC in study of lungs and progres-
sion of disease have been published by Poojary B.18 Zamprogno 
et. al. developed a second generation LoC based on a stretchable 
and biodegradable membrane that mimics the geometrical, me-
chanical, biophysical and transport properties of the lung-alveolar 
barrier.19 Additionally, another noteworthy endeavor in the form 
of proof-of-concept studies has been reported by Huh DD.20 In 
another study, a robust, versatile alveoli-on-chip was developed 
and studied by Richter et. al.21 Study of the contribution of LoC 
to human lung structure-function relationships at cell, tissue and 
organ levels have been discussed by Bai & Ingber in an interesting 
article.22

Liver-on-chip
The liver is one of the most vital organs in the body that keeps 
regular physiological processes in check. It has a strong capacity 
for regeneration and can recover from any chemical or physical 
harm. However, unfavorable drug or disease reactions may result 
in permanent damage, but research in this area has been hindered 
due to the lack of suitable in vitro models. Therefore, these medi-
cations have been tested in vivo on animals, and when tested in 
humans, lethal side effects were observed. The OoC technique has 
been used to circumvent this drawback and liver-on-chip models 
have been able to predict the damaging effects of medications on 
liver cells. Here, the chip is seeded with liver cells and cultured, 
with the therapeutic and toxic effects of drugs on the liver cells 
then studied. Such systems may be beneficial for hepatotoxicity 
investigations.23–29

Brain-on-chip
Brain-on-chip technology utilizes a multi-step lithography tech-
nique. The technology is useful for the examination of the axon 
as well as its regeneration and treatment with various medicines, 
while several models have been developed to investigate the 

pathophysiology of neurodegenerative disorders. Brain-on-chip 
development falls into three categories: high-throughput systems, 
screening of experimental settings, and 3D high-content systems 
that imitate the environment of brain tissue. A multichip system 
with interconnected chips can mimic communication between 
many cells and organs.30

Blood-on-chip
The human circulatory system is a complex network of blood, 
blood vessels, and the heart that is difficult to replicate.31 The criti-
cal constituents of blood such as white blood cells, red blood cells, 
platelets, and plasma are incorporated in the organ-on-chip models 
to simulate the behavior of the blood. Here, each kind of blood cell 
is segregated and studied to understand the interactions between 
the major immune system components. Such chips are constructed 
from polydimethylsiloxane (PDMS) prepolymer using a polylitho-
graphic technique and have 500 µ to 1 mm broad channels. These 
channels are packed with polystyrene beads.23

Pancreas-on-chip
Pancreatic cancer is resistant to most of the available anti-cancer 
medications and is difficult to eliminate surgically. This is due to 
high levels of invasiveness of the cancerous cells.32 To overcome 
this drawback, Miollis et. al. used the OoC strategy where one 
channel was seeded with oncogenic molecules and another with 
mice pancreatic cancer cells. The chip was then scrutinized to 
investigate the drug response. The same technique was repeated 
with human pancreatic cancer cells in place of the mice pancreatic 
cancer cells.32

Breast tissue and tumor-on-chip
Breast cancer is the most common type of cancer reported in wom-
en. Its invasive characteristics and challenging treatment present 
many obstacles in its therapy. Numerous two-dimensional models 
have been tried with limited success as they failed to mimic the tu-
mor characteristics. Different preclinical experiments were carried 
out but failed due to their inability to reproduce the obtained re-
sults.33 These challenges were overcome by using the OoC concept 
to design a microfluidic 3D device called a tumor-on-chip (ToC) 
designed to imitate the behavior, biological processes, mechanical 
characteristics, and various reactions of tumor cells. Such ToC de-
vices aid in understanding approaches for breast cancer treatment 
and in screening for anti-cancer drugs. The use of ToC models 
to research how a malignant clone interacts with the drug holds 
promise in the domain of cancer therapeutics.34,35

Kidney-on-chip
The kidney is a complex organ that contains a variety of cell 
types with unique functions. The coordination of their activities 
facilitates the removal of metabolic waste products and maintains 
electrolyte balance in the blood. The nephron which is the func-
tional unit of the kidney, is subdivided into several segments, each 
with a specific job to do.36 Every component is prone to genetic 
abnormalities with tubulopathies and glomerulopathies account-
ing for the majority of hereditary kidney diseases. In the recent 
past next-generation sequencing strategies have been utilized to 
provide individualized care for hereditary kidney diseases.36 Cur-
rently, OoCs hold great promise in the diagnosis and treatment of 
kidney disorders. A human kidney glomerulus chip consisting of 
immortalized kidney podocytes and glomerular endothelial cells 
close to one another was used to study the role of glomerular me-
chanical forces in increasing glomerular leakage in hypertensive 
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nephropathy-diagnosed patients.37 In another study, a human kid-
ney glomerulus chip that replicated the glomerulus’ permselectiv-
ity was used to study the renal effects of auto-immunity.38

In this review, recent developments in OoC-based in vitro mod-
els for the study of hereditary renal disease are discussed followed 
by an exploration of its proficiency to help uncover additional 
disease pathomechanisms and culminate into fresh therapeutic ap-
proaches. Kidney-on-chip (KoC) models aim to recreate the es-
sential kidney functions in the laboratory. Here, the genetic profile 
of the diseased cell as well as its phenotype is preserved by in-
corporating specific mechanical and microenvironmental stimuli, 
thereby allowing the proliferation of the cell and promoting a bet-
ter understanding of the pathophysiology of the disease.39–44 In-
terestingly, the research groups have focused on specific kidney 
functions rather than the whole nephron and reproduced only a 
portion of the nephron. Although different kidney illnesses have 
been portrayed by a variety of in vitro cell models, the KoC plat-
form has not yet been translated for all of them.45

Glomerulus-on-chip
The glomerular filtration barrier, which is made up of endothelial 
cells, podocytes, and the glomerular basement membrane (GBM), 
is crossed by solute-filled blood as the nephron’s first function. A 
microfluidic system was employed by Petrosyan et al. to reproduce 
a glomerular filtration barrier using various kinds of podocytes 
and endothelial cells.46 The model also included podocytes made 
from Alport syndrome (AS) patients’ amniotic follicles. Reduced 
permselectivity for albumin due to a faulty GBM generated by the 
sick podocytes was reported. The appropriateness of this system to 
imitate the symptoms of diabetic kidney disease and drug-induced 
nephrotoxicity was confirmed by the clinical findings of high glu-
cose levels and the presence of aminonucleoside puromycin.46,47

These findings strongly indicate that the incorporation of pa-
tient-derived cells into the KoC models is the key to successful 
personalized treatment. At the same time, the improved cellular 
milieu of KoC devices is largely responsible for highly special-
ized KoC models. In addition to endothelial cells, podocytes, and 
GBM the glomerulus also contains supportive cell types such as 
mesangial, granular, and macula densa. However, very few models 
have included mesangial cells, even though they are essential for 
regulating the flow rate, endocrine communication, and structural 
support.48–53

Proximal tubule-on-a-chip
The proximal tubule (PT) plays an important role in the activation 
of vitamin D, which is a precursor to the absorption of calcium.54 
This proximal tubule characteristic has been recreated successfully 
in a KoC model indicating that these OoC models are capable of 
replicating the maturation and functional integrity of PT cells.55 
The Lewis group investigated a different strategy for permeable 
channels:56 Two neighboring channels were constructed on sur-
faces that resembled the extracellular matrix via bioprinting. Then, 
each channel was seeded with PT epithelial cells and glomerular 
endothelial cells. The study successfully simulated both healthy 
and disease conditions (hyperglycemia) through active reabsorp-
tion of solutes, including albumin and glucose.56

Distal tubule-on-a-chip
The distal tubule plays an important role in regulating electro-
lyte homeostasis and extracellular fluid volume.57–59 Wang et al. 
worked on creating a distal-tubule-on-chip to study the effect of 
pseudorabies virus infection on electrolyte transport. The study 

demonstrated that the affected cells displayed decreased reabsorp-
tion of sodium ions due to renal dysfunction leading to serum elec-
trolyte abnormalities and type II renal tubular acidosis.60

Collecting duct-on-a-chip
The last part of the nephron, the collecting duct, allows urine to 
be discharged as waste, and the reabsorption of water and Na+ is 
the primary process in this section.61 Regulation of body water ho-
meostasis is a complex mechanism involving the renin-angiotensin 
system and is influenced by fluid shear stress, transepithelial os-
motic gradient, hormones, and cytokines. Studies carried out us-
ing in vitro cell culture have met with limited success due to the 
poor reproducibility of the biochemical and mechanical cues of 
the cellular microenvironment. Jang et al. successfully developed 
a collecting-duct-on-a-chip which is a multi-layer microfluidic de-
vice wherein fluid shear stress, hormonal stimulation, and osmotic 
gradient were incorporated to generate tubular dynamics that emu-
lated the luminal fluid microenvironment. This model was used 
to study the changes in morphology and function of renal tubular 
cells.62

Combined KoC model
In recent years, computer modeling of KoCs has been attempted 
using conceptual methods.63 A chip-based system where each com-
ponent of the kidney was independently cultured and subsequently 
joined to make a combined KoC model was reported by Sakolish 
and Mahler.64 They used a combination of biological filters and PT 
chips to mimic glomerular filtration. Other systemic models have 
been created by combining KoC with distant organs, such as the 
liver.65 Recently, the concept of a “body-on-a-chip” that includes 
the skin, heart, lung, kidney, liver, intestine, and brain has been 
put forth. In this model, the cells collected from the kidney and 
other organs of a patient were cultivated on a chip thus leading to 
a patient-specific chip. Such models are capable of demonstrating 
the effect of a diseased kidney on other organs and vice versa.66 
In conclusion, since kidney disorders also affect other organs, the 
“human-on-a-chip” strategy, which involves the culturing of mu-
tated cells representing different organs on tissue-specific chips 
that are interconnected, could recreate the overall systemic effects 
of the disease.67–70

Evidence-based OoC approach to pharmacological study of 
drugs and diseases
OoCs can be used for the screening of drugs, disease modeling, 
and elucidating the mechanisms of drug targeting as well as drug 
toxicity.71,72 The success of the OoC approach lies in the fact that 
it is a useful tool that can generate a large amount of data in a very 
short time. These systems are simple to fabricate and can be gener-
ated using indigenous materials. OoCs can be used to simultane-
ously study the effect of different drugs at different doses and bear 
a close resemblance to the in vivo microenvironment.73 The output 
of OoC devices can be fed into analytical devices such as HPLC 
equipment or a mass spectrophotometer. DNA binding assays can 
also be used for the detection of chemicals released. Alternatively, 
assay kits can be used to identify and quantitative biomarkers, and 
sensors may be used to measure the decrease in nutrient levels or 
the secretion of metabolites.74–78 A few case studies of pharmaco-
logical experiments using OoC devices are discussed below.

Liver-on-chip systems where liver cells of different species are 
cultured in adjacent microchannels have been used to study the 
effects of a single drug across species.79 Liver-on-chip systems 
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have shown promise in the study of antibiotic effectiveness in vitro 
thus greatly reducing the risk of antibiotic resistance.80 Liver-on-
chip systems have greatly facilitated the study of hepatoprotective 
mechanisms of several drugs.81–84

Bang et al. reported the study of the pathophysiology of neu-
rodegenerative disorders using OoCs. In another study, neurons 
isolated from different regions of the brain of rats were success-
fully cultured onto a multi-regional brain-on-chip and used to un-
derstand the pathophysiology of neurodegenerative diseases.85–87 
Also, neurological disorders such as epilepsy and Alzheimer’s dis-
ease have been recreated in the labs and found to be of immense 
value in the screening of drugs.88,89 It is well known that the blood-
brain barrier prevents the entry of most of the drugs into the brain. 
Several blood-brain barrier-on-chip models have been developed 
to hasten the drug discovery process and to develop insights into 
drug delivery to the brain.90–97

Challenges
The above review infers that the OoCs designed to study the effect 
of drugs on tissues and organs at a microphysiological level can 
prove to be valuable alternatives for in vitro cell culture studies and 
reduce the extent of preclinical and clinical studies to be carried 
out. However, this technology has its limitations.98–105 Instances 
of interaction between the microfluidic culture and the material 
of construction of the microchannels have been reported. This can 
be overcome by surface treatment of the microchannels. However, 
the surface treatment varies with the material of construction and 
the cells under study. Also, with the surface area-to-volume ratio 
being high, surface effects such as the adsorption of cells to the 
microchannel surfaces are seen. This has been observed to lead 
to cell cycle progression problems, especially in the proliferative 
phase. Due to its permeable nature, PDMS can cause drying of the 
media containing the cultured cells, leading to a shift in osmolar-
ity causing cell death. Cellular respiration releases carbon dioxide 
that gets converted to carbonic acid causing an undesirable shift in 
the pH of the microenvironment. Therefore, the buffering of media 
and exchange of gases must be carefully monitored. Further, due 
to the high density of cells in the culture, nutrients are depleted 
rapidly while the waste products accumulate at a fast pace. This 
requires continuous perfusion of nutrient media into the perfusion 
channels. However, this exposes the proliferating cells to shear 
stress that may have detrimental effects. The structural features of 
whole cells such as peristaltic movement of the stomach, shear in 
blood vessels, and breathing movement of lungs are not elucidated 
by these cultured cells. Also, tissue-tissue interfaces are not repli-
cated in these systems. Several research laboratories are working 
on overcoming these limitations and developing robust organ-on-
chip prototypes that can be used to replicate the physiology of the 
human body and study the impact of drugs in diseased states.

Future directions
This review conclusively demonstrates the crucial role of human 
pluripotent stem cells and disease cells in pharmacological screen-
ing and disease modeling. Such stem cells need suitable scaffolds 
that provide a conducive microenvironment for their proliferation. 
Microfluidic devices where various cell types are co-cultured hold 
great promise in the study of tissue-tissue interactions, signaling, 
and cell recruitment in both healthy and pathological states.106 Fur-
thermore, the incorporation of sensors into microfluidic systems 
aids in the real-time assessment of cellular activity.107–109 In line 

with this, several types of human kidney-on-a-chip systems that 
reflect the microenvironment of the kidney tubule and detect drug 
nephrotoxicity have been developed. Such models help to get a 
better understanding of the safety profile and efficacy of the drugs 
thus reducing the dependence on animal models and clinical trials.

Conclusions
In conclusion, the integration of microphysiological systems, par-
ticularly OoCs, into the drug discovery landscape represents a 
promising avenue for addressing persistent challenges in medica-
tion safety. The limitations of traditional in-vivo investigations and 
in-vitro assays have propelled a paradigm shift towards a more 
sophisticated and human-centric approach. This cutting-edge tech-
nology not only provides valuable insights into the pathophysiol-
ogy of diseases but also stands as a beacon of hope for more accu-
rate predictions of medication efficacy and safety in humans. The 
strides made in OoCs know-how open new horizons for advancing 
drug development, ushering in an era where pharmaceutical op-
erations can navigate with greater precision, informed by a deeper 
understanding of human biology. However, as we embrace this 
innovative frontier, it is crucial to acknowledge and address the 
challenges associated with OoCs implementation, paving the way 
for continuous refinement and optimization. With ongoing dedica-
tion to research, collaboration, and technological advancements, 
OoCs are poised to play a pivotal role in shaping the future of drug 
discovery and personalized medicine.
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